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TRENTo initial condition model



Initial condition is still a major uncertainty in heavy-ion collisions

Uncertainty in nuclear structure

• Woods Saxon parametrization,

deformation, radial profiles.

• Correlations.

• Isospin.

Uncertainty in energy deposition.

• Transverse (x⊥) structure.

• Longitudinal (ηs) structure.

• Baryon number, initial flow ...
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The idea of TRENTo (middle rapidity)

Assumption: γ → ∞
In central region with boost invariance

dE

dx2⊥dηs
(ηs = 0) = f (TA(x⊥),TB(x⊥))

A flexible parametric approach to f (TA,TB) [JS

Moreland, JE Bernhard, SA Bass, PRC 92, 011901 (2015)].

No dynamics, but useful to quickly estimate the

effect of initial state uncertainty.
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Nuclear configuration: current public TRENTo (2D)1

208Pb 238U

3He p

• No isospin, just nucleons.

• One-nucleon density: Woods-Saxon form 1
1+exp( r−R

a )
• R: radius, a: diffuseness

• Deformation: current public version only includes β2, β4.

R → R [1 + β2Y20(θ, ϕ) + β4Y40(θ, ϕ)]

• Parameters [Atom.Data Nucl.Data Tabl. 109-110 (2016) 1].

• min rij > dmin to mimic short-range repulsion.

• Light nuclei: load samples of nuclear configurations

|Ψ|2(r), e.g., 3He [PLB 680, 225–230 (2009)], 16O.

1http://qcd.phy.duke.edu/trento/index.html
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Nuclear configuration: will enable more density profile

• Allow direct input to Woods-Saxon parameters

R, a, βn, ....

• Including β3 deformation.

• 1

1+e(r−Rθ,ϕ)/a → 1+b(r/r0)
2

1+e(r−Rθ,ϕ)/a

Example: Oxygen with a large |β3| and nonzero

b and r0 ▷
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Nucleon profile and N-N inelastic cross section

ρp(r) ρp(r)

b

Nucleon model #1: Gaussian proton

ρp(r, z) =
e−

r2+z2

2w2

(2πw)3/2

∫
dz

−−→ ρp(r) =
e−

r2

2w2

2πw2

Probability of inelastic collisions at fixed impact parameter.

Tpp(b) =

∫
ρp(r − b/2)ρp(r + b/2)dr2

Pcoll(b) = 1− exp {−σggTpp(b)}

σgg : effective opacity parameter tuned to reproduce σinel
pp (

√
s)

σinel
pp

√
s =

∫
Pcoll(b;σgg (

√
s))db2
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Nucleon profile and N-N inelastic cross section

Nucleon model #2: with substructures [JS moreland, JE

Bernhard, SA Bass, PRC 101, 024911]

ρp(r) =
1

N

N∑
i=1

e
− (r−ri−Rcm)2

2w2
c

2πw2
c

, ri ∼
e−

r2i
2w′2

2πw ′2

Rcm fix the center of mass.

σgg solved in a MC way to reproduce σinel
pp (

√
s).
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Binary collisions and fluctuating participants density

ri rj

bAB

• Participant nucleons determined by sampling binary collision

probability Pcoll(b = |rj − bAB − ri |).
• Fluctuating participant density:

TA or B(r) =
∑

i∈Part. A or B

γiρp(r − ri )

• P(γi ) ∝ γk−1e−kγ . Emulate fluctuation in pp measurement,

can change with kinematic cuts!
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Energy density production at mid-rapidity

dET

dx2⊥dηs
(x⊥, ηs = 0) = Norm× f (TA(x⊥),TB(x⊥))

TRENTo assumes

f (TA,TB) =

(
T p
A + T p

B

2

)1/p

known as “generalized mean” (p-mean) ansatz.
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One motivation of using p-mean

p-mean is “homogeneous” f (kTA, kTB) = kf (TA,TB).

Binary collisions (TATB) is not.

If Ncoll involved, fine binning of Nch should differentiate ϵ2 ▷.

[JS Moreland, JE Bernhard, SA Bass,

PRC 92, 011901 (2015)]

p-mean is a class of energy deposition consistent with this observation.

Two-component Glauber Nch ∝ (1− x)Npart + xNcoll is not consistent.
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Connections to scaling of other models

Still, only a subclass of

exisiting models.

[JS Moreland]
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Energy deposition ansatz

Round proton, AA@LHC

[Duke PRC 94 024907] Round p, RHIC&LHC, δf uncertainty

[JETSCAPE PRC 103, 054904]

Fluctuating proton AA and pA

[Duke PRC 101, 024911]

Fluctuating proton AA and pA, pT -diff obs, refined

centrality class [Trajectum PRC 103, 054909, ]

The p-parameter is always tightly constrain

with high likelihood at p = 0.

p = 0 implies e =
√
TATB , can be motivated

by Ecm =
√
TAp+TBp− =

√
TATBs [C Shen, S

Alzhrani PRC 102 014909]
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Nuclear/nucleon configurations & total cross-section

Centrality: percentage of minimum-bias hadronic cross

section Pb-Pb@2.76 TeV 770± 10(stat.)+60
−50(sys.)fm

2

8% level. [ALICE PRL 109 252302, PRC 88 044909].

In Glauber-based models, including TRENTo

• Gaussian nucleon w and β can affect the total cross section:

σTRENTo
PbPb [w = 0.5 fm] = 782± 4 fm2 vs σTRENTo

PbPb [w = 0.8 fm] = 833± 4 fm2

• Some reasons that σAA is not used as a constraint in analysis before:

• pp and nuclear inelastic cross-section have large uncertainty.

• No exact match of geometry model to the experimental minimum-bias trigger.

• Different IC models have different minimum-bias criteria ...

• Can we make use of the precision measurement cross sections in isobar collisions?
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Isobar collisions



Some isobar results from STAR Collaboration [arXiv:2109.00131].
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• Very high precision measurements.

• Can be very challenging for models. Previous Global fits usually agree with multiplicity

and flow data within 5-10% uncertainty.
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Perturbations in nuclear deformation

Use isobar to maximize the sensitivity to nuclear geometry [J Jia, C-J Zhang, 2111.15559 and J Jia

PRC 105 014905].
Linearized response of vn to ϵn

v2 ≈ k22ϵ2

v3 ≈ k23ϵ3

Best scenario: isobar systems only differ in higher orders in

the response coefficients k22, k23.

• Unfortunately, hydrodynamical response not entirely

canceled when RA ̸= RĀ

[◁ G. Nijs, W. van der Schee 2112.13771] except for very

central region.
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An initial-state study (0-25%)

First, fixing the energy deposition parameter p = 0, nucleon width w = 0.6 fm, fluctuation

parameter k = 1, and repulsion distance dmin. Just vary Woods-Saxon parameters

• 0 < β2,Ru, β2,Zr < 0.3.

• 0 < β3,Ru, β3,Zr < 0.3.

• 4.9 < RRu,RZr < 5.2 fm.

• 0.4 < aRu, aZr < 0.6 fm.


(dNch/dη)Ru-Ru

(dNch/dη)Zr-Zr
(v2)Ru−Ru

(v2)Zr-Zr
(v3)Ru-Ru

(v3)Zr-Zr

v .s.


(
∫
ed2x)

Ru-Ru

(
∫
ed2x)

Zr-Zr
(ϵ2)Ru−Ru

(ϵ2)Zr-Zr
(ϵ3)Ru-Ru

(ϵ3)Zr-Zr
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Nuclear deformation with “only” information from HIC

Apart from the sign of β, no prior knowledge from

nuclear strucutre used.

◁ Not very sensitive to the absolute value of β

without using the magnitude of vn. High

confidence: β2,Ru/β2,Zr > 1, β3,Ru/β3,Zr < 1
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Is this conclusion robust when other TRENTO parameters vary?

Vary both TRENTo parameters and the nuclear deformation and Woods-Saxon parameter.

• 0 < β2,Ru, β2,Zr < 0.35.

• 0 < β3,Ru, β3,Zr < 0.35.

• 4.9 < RRu,RZr < 5.1 fm.

• 0.4 < aRu, aZr < 0.6 fm.

• p ∼ e
− (p−0.05)2

2×0.062 informative prior from previous

study.

• 0.4 < w < 1.0 fm, nucleon width.

• 1/3 < k < 3, fluctuation.

• 0 < d < 1.5 fm, nucleon repulsion distance.

Relatively robust conclusion on β2 and β3,

considering uncertainties in TRENTo parameters.

17



Nuclear cross section

• AA cross section changes significantly with

current parametrization of β (and a0,w).

• Cross sections as an independent constraint.

• Precise values may depend on “minimum bias”

definition + other systematic. Do they cancel

in isobar ratio?

Total cross-section for AA and pA:

Ratio of two isobars with one has β2 = 0.
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3D developments



How can we use isobars in asymmetric collisions?

• Total cross sections of pA vs pĀ.

• Longitudinal decorrelations for rapidity evolution of geometry.

• Collisions of large nuclei and isobar, e.g. Au+Ru vs Au+Zr.

RAu ≈ 6.5 fm. RRu,Zr ≈ 5.0 fm.

Eliminate one deformed object in ultra-central collisions.

Ru, Zr

[Fig. Javier Orjuela Koop, University of Colorado, Boulder]

Extra efforts: 3D initial condition + 3+1D simulation (order of magnitude expensive).
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TRENTo: from middle to finite rapidity

x

ηbeam

η
−ηbeam

• New2 TRENTO 3D parametrization is constructed

exclusively for p = 0. Near middle rapidity

e(x, ηs = 0) ∝
[
TA(x)p + TB(x)p

2

] 1
p

→ N
√
s
α√

TATB

• Extend to finite rapidity, but away from ybeam

e(x, |ηs | ≪ yb) = e(x, 0)e
− (ηs−ηc.m.)

2

2yb

ηc.m.(x) =
1

2
ln

TAe
yb + TBe

−yb

TAe−yb + TBeyb

width∼ √
yb (Landau picture of particle production).

2Earlier 3D extension, WK, JS Moreland, JE Bernhard, SA Bass, PRC 96, 044912 (2017).
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Scaling of particle production near ybeam

Limiting fragmentation assumption3:

dNch/dη/Npart,target ≈ F (η − yb)

• Form of dF (η − yb) motivated by parton distribution

function of the broken target4.

• Assume energy deposition y ≈ yb scales as

deF/B
dη

∼ CF/B [TA(x)F (yb − η) + TB(x)F (yb + η)]

• Interpolate to midrapidty fireball

(N
√
s
α√

TATBg(η − ηcm)), with longitudinal

energy-momentum conservation.

4J Benecke, TT Chou, CN. Yang, E Yen Phys. Rev. 188 (1969) 2159. PHOBOS PRL 91 (2003) 052303.
4J Jalilian-Marian, PRC 70, 027902; SA Bass, B Müller, DK Srivastava PRL 91 052302
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Impact on rapidity-dependent geometric properties

• Geometric properties will evolve from fragmentation region (TA,TB) to central region

(
√
TATB).

• Central fireball becomes increasingly important at high
√
s.

Typical TA,TB for A-A collisions Typical TA,TB for p-A collisions
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Impact on rapidity-dependent geometric properties

• Geometric properties will evolve from fragmentation region (TA,TB) to central region

(
√
TATB).

• Central fireball becomes increasingly important at high
√
s.

Typical TA,TB for A-A collisions Typical TA,TB for p-A collisions
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Spacetime-rapidity evolution of the event geometry

Rapidity evolution of the eccentricity:

ϵn(ηs)e
inΦn(ηs ) =

∫
dx2⊥r

ne inϕe(x⊥, ηs)∫
dx2⊥r

ne(x⊥, ηs)

• ⟨ϵn⟩(ηs) ∼ const. in AA collisions.

• In p-A collisions, ϵn interpolates

proton-shape fluctuation, central

fireball, and nuclear participant

fluctuation.
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Longitudinal factorization ratio of participant planes

Pb-Pb 2.76 TeV, CMS, PRC 92 034911

η−η ηref

Qn(η) =
∑

i∈η e
inϕi

0

rn =
⟨Qn(−η)Q∗

n (ηref)⟩
⟨Qn(η)Q∗

n (ηref)⟩
≈ ⟨cos(n[Ψn(−η)−Ψn(ηref)])⟩

⟨cos(n[Ψn(η)−Ψn(ηref)])⟩

• Approximate Ψn with Φn of ϵn.

• Agreement for mid-central collisions. TRENTo

results in too much decorrelation in 0-5% collisions.

Other studies: AMPT+hydro, LG Pang et al Eur.Phys.J.A 52 (2016)

97; 3D-Glasma, B Schenke, S Schlichting; Torque Glauber, P Bozek,

W Broniowski, PLB 752 (2016) 206-211

7Pb-Pb 2.76 TeV, CMS, PRC 92 034911. Pb-Pb 5.02 TeV, ATLAS, EPJC 78 142; Au-Au 200 & 27 GeV, STAR Preliminary

QM18 (NPA 982 403-406),QM19(2005.03252)
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Ongoing works

Ongoing efforts with Derek Soeder (Duke), Jean Francois Paquet, Steffen Bass.

• Calibrate new 3D TRENTo + (1+1D) dynamics to charged particle pseudorapidity density.

• To do: calibrate with JETSCAPE (3+1)D simulation of soft sector [JETSCAPE Phys.Rev.C

103 (2021) 5, 054904, https://jetscape.org/sims/].

• TRENTo (2d/3d)

• Pre-equilibrium dynamics (Free streaming).

• 3+1D viscous hydrodynamics (MUSIC).

• Particlization (IS3D).

• Hadronic transport (SMASH).
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Summary

• TRENTo: parametric initial condition available in 2D and 3D (developing).

• New 3D model:

• TRENTo-2D near middle rapidity is interpolated to limiting fragmentation region near beam

rapidity.

• Analysis with dynamical models underway.

• Isobar measurements are sensitive to nuclear geometry.

• A simple Bayes study of Ru/Zr of Nch, v2, v3 at the initial condition (IC) level:

• Results are robust within our current uncertainty in energy deposition model.

• IC calculation without dynamics may not have the required accuracy.

• Are total cross-section ratios feasible in isobar collisions AA/ĀĀ, pA/pĀ, AB/ĀB to

constrain Glauber-based models?
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Questions?
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Longitudinal factorization ratio of participant planes

Pb-Pb 2.76 TeV, CMS, PRC 92 034911

η−η ηref

Qn(η) =
∑

i∈η e
inϕi

0

rn =
⟨Qn(−η)Q∗

n (ηref)⟩
⟨Qn(η)Q∗

n (ηref)⟩
≈ ⟨cos(n[Ψn(−η)−Ψn(ηref)])⟩

⟨cos(n[Ψn(η)−Ψn(ηref)])⟩

• Approximate Ψn with Φn of ϵn.

• Agreement in mid-central collisions. TRENTo

results in too much decorrelation in 0-5% collisions.

Other studies: AMPT+hydro, LG Pang et al Eur.Phys.J.A 52 (2016)

97; 3D-Glasma, B Schenke, S Schlichting; Torque Glauber, P Bozek,

W Broniowski, PLB 752 (2016) 206-211

•
√
s-dependent rn in 10-40%5, to be improved with

dynamical evolution.
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Is this conclusion robust when other TRENTO parameters varies?

Vary both TRENTo parameters and the nuclear deformation and Woods-Saxon parameter.

• 0 < β2 < 0.35.

• 0 < β3 < 0.35.

• 4.9 < RRu,RZr < 5.1 fm.

• 0.4 < aRu, aZr < 0.6 fm.

• p ∼ e
− (p−0.05)2

2×0.062 informative prior from previous study.

• 0.4 < w < 1.0 fm, nucleon width.

• 1/3 < k < 3, fluctuation.

• 0 < d < 1.5 fm, nucleon repulsion distance.
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